Package: contsurvplot 0.2.1

Robin Denz

contsurvplot: Visualize the Effect of a Continuous Variable on a Time-to-Event Outcome

Graphically display the (causal) effect of a continuous variable on a time-to-event outcome using multiple different types of plots based on g-computation. Those functions include, among others, survival area plots, survival contour plots, survival quantile plots and 3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally. For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.

Authors:Robin Denz [aut, cre]

contsurvplot_0.2.1.tar.gz
contsurvplot_0.2.1.zip(r-4.5)contsurvplot_0.2.1.zip(r-4.4)contsurvplot_0.2.1.zip(r-4.3)
contsurvplot_0.2.1.tgz(r-4.5-any)contsurvplot_0.2.1.tgz(r-4.4-any)contsurvplot_0.2.1.tgz(r-4.3-any)
contsurvplot_0.2.1.tar.gz(r-4.5-noble)contsurvplot_0.2.1.tar.gz(r-4.4-noble)
contsurvplot_0.2.1.tgz(r-4.4-emscripten)
contsurvplot.pdf |contsurvplot.html
contsurvplot/json (API)
NEWS

# Install 'contsurvplot' in R:
install.packages('contsurvplot', repos = c('https://robindenz1.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/robindenz1/contsurvplot/issues

Pkgdown site:https://robindenz1.github.io

On CRAN:

Conda:

causal-inferencecontinuousg-computationsurvival-analysisvisualization

5.53 score 12 stars 56 scripts 407 downloads 12 exports 106 dependencies

Last updated 1 years agofrom:3b83f5f2cc. Checks:1 OK, 6 NOTE, 2 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 09 2025
R-4.5-winNOTEMar 09 2025
R-4.5-macNOTEMar 09 2025
R-4.5-linuxNOTEMar 09 2025
R-4.4-winNOTEMar 09 2025
R-4.4-macNOTEMar 09 2025
R-4.4-linuxNOTEMar 09 2025
R-4.3-winERRORMar 09 2025
R-4.3-macERRORMar 09 2025

Exports:curve_contplot_surv_3Dsurfaceplot_surv_animatedplot_surv_areaplot_surv_at_tplot_surv_contourplot_surv_heatmapplot_surv_linesplot_surv_matrixplot_surv_quantilesplot_surv_rmstplot_surv_rmtl

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspacedata.tablediagramdigestdoParalleldplyrevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applygenericsggplot2globalsgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypillarpkgconfigplotrixpolsplineprodlimprogressrPublishquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletidyselecttimeregtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo

Visualizing the Causal Effect of a Continuous Variable on a Time-To-Event Outcome

Rendered fromintroduction.Rmdusingknitr::rmarkdownon Mar 09 2025.

Last update: 2023-07-19
Started: 2022-04-21